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Abstract

We study the dynamical properties of two new relaxation labeling schemes described in terms of di!erential equations,
and hence evolving in continuous time. This contrasts with the customary approach to de"ning relaxation labeling
algorithms which prefers discrete time. Continuous-time dynamical systems are particularly attractive because they can
be implemented directly in hardware circuitry, and the study of their dynamical properties is simpler and more elegant.
They are also more plausible as models of biological visual computation. We prove that the proposed models enjoy
exactly the same dynamical properties as the classical relaxation labeling schemes, and show how they are intimately
related to Hummel and Zucker's now classical theory of constraint satisfaction. In particular, we prove that, when
a certain symmetry condition is met, the dynamical systems' behavior is governed by a Liapunov function which turns
out to be (the negative of) a well-known consistency measure. Moreover, we prove that the fundamental dynamical
properties of the systems are retained when the symmetry restriction is relaxed. We also analyze the properties of a simple
discretization of the proposed dynamics, which is useful in digital computer implementations. Simulation results are
presented which show the practical behavior of the models. ( 2000 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Relaxation labeling processes are a popular class of
parallel, distributed computational models aimed at solv-
ing (continuous) constraint satisfaction problems, instan-
ces of which arise in a wide variety of computer vision
and pattern recognition tasks [1,2]. Almost invariably,
all the relaxation algorithms developed so far evolve in
discrete time, i.e., they are modeled as di!erence rather
than as di!erential equations. The main reason for this
widespread practice is that discrete-time dynamical sys-
tems are simpler to program and simulate on digital
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computers. However, continuous-time dynamical sys-
tems are more attractive for several reasons. First, they
can more easily be implemented in parallel, analog cir-
cuitry (see, e.g., Ref. [3]). Second, the study of their
dynamical properties is simpli"ed thanks to the power of
di!erential calculus, and proofs are more elegant and
more easily understood. Finally, from a speculative
standpoint, they are more plausible as models of biolo-
gical computation [4].

Recently, there has been some interest in developing
relaxation labeling schemes evolving in continuous time.
In particular, we cite the work by Stoddart [5] motivated
by the Baum}Eagon inequality [6], and the recent work
by Li et al. [7] who developed a new relaxation scheme
based on augmented Lagrangian multipliers and Hop-
"eld networks. Yu and Tsai [8] also used a continuous-
time Hop"eld network for solving labeling problems.
All these studies, however, are motivated by the
assumption that the labeling problem is formulated as an
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energy-minimization problem, and a connection to stan-
dard theories of consistency [9] exists only when the
compatibility coe$cients are assumed to be symmetric.
This is well-known to be a restrictive and unrealistic
assumption. When the symmetry condition is relaxed the
labeling problem is equivalent to a variational inequality
problem, which is indeed a generalization of standard
optimization problems [9].

In this paper, we study the dynamical properties of two
simple relaxation labeling schemes which evolve in con-
tinuous time, each being described in terms of a system of
coupled di!erential equations. The systems have been
introduced in the context of evolutionary game theory, to
model the evolution of relative frequencies of species
in a multi-population setting [10], and one of them has
also recently been proposed by Stoddart et al. [5], who
studied its properties only in the case of symmetric com-
patibilities. Both schemes are considerably simpler than
Hummel and Zucker's continuous-time model [9] which
requires a complicated projection operator. Moreover,
the "rst scheme has no normalization phase, and this
makes it particularly attractive for practical hardware
implementations. Since our models automatically satisfy
the constraints imposed by the structure of the labeling
problem, they are also much simpler than Yu and Tsai's
[8] and Li et al.'s [7] schemes, which have to take
constraints into account either in the form of penalty
functions or Lagrange multipliers.

The principal objective of this study is to analyze the
dynamics of these relaxation schemes and to relate them
to the classical theory of consistency developed by Hum-
mel and Zucker [9]. We show that all the dynamical
properties enjoyed by standard relaxation labeling algo-
rithms do hold for ours. In particular, we prove that,
when symmetric compatibility coe$cients are employed,
the models have a Liapunov function which rules their
dynamical behavior, and this turns out to be (the nega-
tive of) a well-known consistency measure. Moreover,
and most importantly, we prove that the fundamental
dynamical properties of the systems are retained when
the symmetry restriction is relaxed. We also study the
properties of a simple discretization of the proposed
models, which is useful in digital computer implementa-
tions. Some simulation results are presented which show
how the models behave in practice and con"rm their
validity.

The outline of the paper is as follows. In Section 2,
we brie#y review Hummel and Zucker's consistency
theory, which is instrumental for the subsequent
development. In Section 3 we introduce the models
and in Section 4 we present the main theoretical results,
"rst for the symmetric and then for the non-symmetric
case. Section 5 describes two ways of discretizing the
models, and proves some results. In Section 6 we present
our simulation results, and Section 7 concludes the
paper.

2. Consistency and its properties

The labeling problem involves a set of objects B"

Mb
1
,2, b

n
N and a set of possible labels ""M1,2, mN.

The purpose is to label each object of B with one label of
". To accomplish this, two sources of information are
exploited. The "rst one relies on local measurements
which capture the salient features of each object viewed
in isolation; classical pattern recognition techniques can
be practically employed to carry out this task. The sec-
ond source of information, instead, accounts for possible
interactions among nearby labels and, in fact, incorpor-
ates all the contextual knowledge about the problem
at hand. This is quantitatively expressed by means of
a real-valued four-dimensional matrix of compatibility
coe$cients R"Mr

ij
(j, k)N. The coe$cient r

ij
(j, k)

measures the strength of compatibility between the hy-
potheses `b

i
has label ja and `b

j
has label ka: high values

correspond to compatibility and low values correspond
to incompatibility. In our discussion, the compatibilities
are assumed to be non-negative, i.e., r

ij
(j, k)*0 for all

i, j"12n and j, k3"; as shown below, this is not
a severe limitation. In this paper, moreover, we will not
be concerned with the crucial problem of how to derive
the compatibility coe$cients. Su$ce it to say that they
can be either determined on the basis of statistical
grounds [11,12] or, according to a more recent stand-
point, adaptively learned over a sample of training data
[13,14].

The initial local measurements are assumed to provide,
for each object b

i
3B, an m-dimensional vector p0

i
"

(p0
i
(1),2, p0

i
(m))T (where `Ta denotes the usual transpose

operation), such that p0
i
(j)*0, i"12n, j3", and

+jp0
i
(j)"1, i"12n. Each p0

i
(j) can be regarded as the

initial, non-contextual degree of con"dence of the hy-
pothesis `b

i
is labeled with label ja. By simply concat-

enating p0
1
, p0

2
,2, p0

n
we obtain a weighted labeling as-

signment for the objects of B that will be denoted by
p03Rnm. A relaxation labeling process takes as input the
initial labeling assignment p0 and iteratively updates it
taking into account the compatibility model R.

At this point, we introduce the space of weighted
labeling assignments:

K
n,m

"Gp3Rnm K pi(j)*0, i"12n, j3" and

m
+
j/1

p
i
(j)"1, i"12nH

which is a linear convex set of Rnm. Every vertex of
K

n,m
represents an unambiguous labeling assignment, that

is one which assigns exactly one label to each object. The
set of these labelings will be denoted by KH

n,m
:

KH
n,m

"Mp3K
n,m

D p
i
(j)"0 or 1, i"12 n, j3"N.
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1Henceforth, when it will be clear from context, the depend-
ence on p will not be stated.

Moreover, a labeling p in the interior of K
n,m

(i.e.,
0(p

i
(j)(1, for all i and j) will be called strictly am-

biguous.
Now, let p3K

n,m
be any labeling assignment. To devel-

op a relaxation algorithm that updates p in accordance
with the compatibility model, we need to de"ne, for each
object b

i
3B and each label j3", what is called a support

function. This should quantify the degree of agreement
between the hypothesis that b

i
is labeled with j, whose

con"dence is expressed by p
i
(j), and the context. This

measure is commonly de"ned as follows:

q
i
(j; p)"

n
+
j/1

m
+
k/1

r
ij
(j, k)p

j
(k). (1)

Putting together the instances q
i
(j; p), for all the p

i
(j), we

obtain an nm-dimensional support vector that will be
denoted by q(p).1

The following updating rule

pt`1
i

(j)"
pt
i
(j) qt

i
(j)

+kpt
i
(k) qt

i
(k)

, (2)

where t"0, 1,2 denotes (discrete) time, de"nes the
original relaxation labeling operator of Rosenfeld et al.
[11], whose dynamical properties have recently been
clari"ed [6]. In the following discussion we shall refer to
it as the `classicala relaxation scheme.

We now brie#y review Hummel and Zucker's theory of
constraint satisfaction [9] which commences by provid-
ing a general de"nition of consistency. By analogy with
the unambiguous case, which is more easily understood,
a weighted labeling assignment p3K

n,m
is said to be

consistent if

m
+
j/1

p
i
(j) q

i
(j; p)*

m
+
j/1

v
i
(j) q

i
(j; p), i"12 n (3)

for all *3K
n,m

. Furthermore, if strict inequalities hold in
(3), for all *Op, then p is said to be strictly consistent. It
can be seen that a necessary condition for p to be strictly
consistent is that it is an unambiguous one, that is
p3KH

n,m
.

In [9], Hummel and Zucker introduced the average
local consistency, de"ned as

A(p)"
n
+
i/1

m
+

j/1

p
i
(j) q

i
(j) (4)

and proved that when the compatibility matrix R is
symmetric, i.e., r

ij
(j, k)"r

ji
(k, j) for all i, j, j, k, then any

local maximum p3K
n,m

of A is consistent. Basically, this
follows immediately from the fact that, when R is sym-
metric, we have +A(p)"2q, +A(p) being the gradient of

A at p. Note that, in general, the converse need not be
true since, to prove this, second-order derivative informa-
tion would be required. However, by demanding that
p be strictly consistent, this does happen [6].

Note that the concept of consistency is invariant under
certain linear transformations of the compatibility
matrix. In fact, let R be a compatibility matrix and let
C(R) denote the set of consistent labelings with respect to
R. From [9] we know that C(R)O0. Let a and b be
arbitrary constants, with a'0, and construct the matrix
R@ as follows: r@

ij
(j, k)"ar

ij
(j, k)#b. Then, because

q@
i
(j),+

j
+k r@

ij
(j, k)p

j
(k)"aq

i
(j)#nb, we have

C(R)"C(R@). This justi"es therefore our restriction to
non-negative compatibilities.

3. Continuous-time relaxation labeling processes

The two relaxation labeling models studied in this
paper are de"ned by the following systems of coupled
di!erential equations:

d

dt
p
i
(j)"p

i
(j) Aqi

(j)!+
k

p
i
(k) q

i
(k)B (5)

and

d

dt
p
i
(j)"p

i
(j)

q
i
(j)!+kpi (k) q

i
(k)

+kpi (k) q
i
(k)

. (6)

For the purpose of the present discussion, q
i
(j) denotes

the linear support as de"ned in Eq. (1). As a matter of
fact, many of the results proved below do not depend on
this particular choice. More generally, the only require-
ments are that the support function be non-negative and,
to be able to grant the existence and uniqueness of the
solution of the di!erential equations, that it be of class C1

[15].
In the "rst model we note that, although there is no

explicit normalization process in the updating rule, the
assignment space K

n,m
is invariant under dynamics (5).

This means that any trajectory starting in K
n,m

will
remain in K

n,m
. To see this, simply note that

+
j

d

dt
p
i
(j)"+

j
p
i
(j) Aqi

(j)!+
k

p
i
(k) q

i
(k)B"0

which means that the interior of K
n,m

is invariant. The
additional observation that the boundary too is invariant
completes the proof. The same result can be proven for
the other model as well, following basically the same
steps. The lack of normalization makes the "rst model,
which we call the standard model, more attractive than
Hummel and Zucker's projection-based scheme [9],
since it makes it more amenable to hardware implemen-
tations and more acceptable biologically. The interest in
the other model, called the normalized model and also
studied by Stoddart [5], derives from the fact that, in
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Fig. 1. Scheme of a circuit implementation for the standard model (5) * see, e.g., Ref. [3] for a description of the symbols adopted.

a way, it is the continuous-time translation of the classi-
cal Rosenfeld}Hummel}Zucker relaxation scheme [11]
(see Section 5). We note that, using a linear support
function (1), the dynamics of the models is invariant
under a rescaling of the compatibility coe$cients r

ij
(j, k)

as described at the end of Section 2. That is, if we de"ne
a set of new compatibility coe$cients r@

ij
(j, k)"

ar
ij
(j, k)#b, with a'0 and b*0, the orbit followed by

the model remains the same, while the speed at which the
dynamics evolve changes by a factor a.

As stated in the Introduction, one attractive feature
of continuous-time systems is that they are readily

mapped onto hardware circuitry. Figs. 1 and 2
show a circuit implementation for the standard and
the normalized models, respectively. As expected,
the standard model leads to a more economic implemen-
tation.

The "xed (or equilibrium) points of our dynamical
systems are characterized by (d/dt) p"0 or, more
explicitly, by p

i
(j) [q

i
(j)!+kpi

(k) q
i
(k)]"0 for all

i"12 n, j3". This leads us to the condition

p
i
(j)'0Nq

i
(j)"+

k
p
i
(k) q

i
(k) (7)
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Fig. 2. Scheme of a circuit implementation for the normalized model (6)* see, e.g., Ref. [3] for a description of the symbols adopted.

which is the same condition we have for the Rosenfeld}
Hummel}Zucker and Hummel}Zucker models.

The next result follows immediately from a character-
ization of consistent labelings proved in Ref. [6, Theorem
3.1].

Proposition 3.1. Let p3K
n,m

be consistent. Then p is an
equilibrium point for the relaxation dynamics (5) and (6).
Moreover, if p is strictly ambiguous the converse also holds.

This establishes a "rst connection between our con-
tinuous-time relaxation labeling processes and Hummel
and Zucker's theory of consistency.

4. The dynamical properties of the models

In this section we study the dynamical properties of the
proposed dynamical systems. Speci"cally, we show how
our continuous-time relaxation schemes are intimately
related to Hummel and Zucker's theory of consistency,
and enjoy all the dynamical properties which hold for the
classical discrete-time scheme (2), and Hummel and
Zucker's projection-based model.

Before going into the technical details, we brie#y re-
view some instrumental concepts in dynamical systems
theory; see Ref. [15] for details. Given a dynamical sys-
tem, an equilibrium point x is said to be stable if,
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whenever started su$ciently close to x, the system will
remain near to x for all future times. A stronger property,
which is even more desirable, is that the equilibrium
point x be asymptotically stable, meaning that x is stable
and in addition is a local attractor, i.e., when initiated
close to x, the system tends towards x as time increases.
One of the most fundamental tools for establishing the
stability of a given equilibrium point is known as the
Liapunov's direct method. It involves seeking a so-called
Liapunov function, i.e., a continuous real-valued function
de"ned in state space which is non-increasing along a
trajectory.

4.1. Symmetric compatibilities

We present here some results which hold when the
compatibility matrix R is symmetric, i.e., r

ij
(j, k)"

r
ji
(k, j), for all i, j"12 n and j, k3". The following

instrumental lemma, however, holds for the more general
case of asymmetric matrices.

Lemma 4.1. For all p3K
n,m

we have

q(p) )
d

dt
p*0,

where ‘‘ ) ’’ represents the inner product operator, for both
the standard and normalized relaxation schemes (5) and (6).

Proof. Let p be an arbitrary labeling assignment in K
n,m

.
For the standard model we have

q(p) )
d

dt
p"+

i,j
q
i
(j)p

i
(j) Aqi (j)!+

k
p
i
(k)q

i
(k)B

"+
i
C+j p

i
(j)q2

i
(j)!A+j p

i
(j)q

i
(j)B

2

D.
Using the Cauchy}Schwartz inequality we obtain, for all
i"12n,

A+j p
i
(j)q

i
(j)B

2
"A+j Jp

i
(j) ) Jp

i
(j)q2

i
(j)B

2

)+
j

p
i
(j) ) +

j
p
i
(j)q2

i
(j)"+

j
p
i
(j)q2

i
(j).

Hence, since +jpi (j)q2
i
(j))(+jpi (j)q

i
(j))2, we have

q(p) ) (d/dt) p*0.
The proof for the normalized model is identical; we just

observe that

q(p) )
d

dt
p"+

i

+jqi(j)p
i
(j) (q

i
(j)!+kpi(k)q

i
(k))

+kpi (k)q
i
(k)

. h

A straightforward consequence of the previous lemma
is the following important result, which states that, in the

symmetric case, the average local consistency is always
non-decreasing along the trajectories of our dynamical
systems.

Theorem 4.2. If the compatibility matrix R is symmetric, we
have

d

dt
A(p)*0

for all p3K
n,m

. In other words, !A is a Liapunov function
for the relaxation models (5) and (6).

Proof. Assuming r
ij
(j, k)"r

ji
(k, j), we have

d

dt
A(p)"2 +

ij
+
jk

r
ij
(j, k)p

j
(k)

d

dt
p
i
(j)

"2q(p) )
d

dt
p*0. h

As far as the normalized scheme is concerned, this
result has been proven by Stoddart [5]. By combining
the previous result with the fact that strictly consistent
labelings are local maxima of the average local consist-
ency (see Ref. [6, Proposition, 3.4]) we readily obtain the
following proposition.

Theorem 4.3. Let p be a strictly consistent labeling and
suppose that the compatibility matrix R is symmetric. Then
p is an asymptotically stable stationary point for the relax-
ation labeling processes (5) and (6) and, consequently, is a
local attractor.

Therefore, in the symmetric case our continuous-time
processes have exactly the same dynamical properties as
the classical Rosenfeld}Hummel}Zucker model [6] and
the Hummel}Zucker projection-based scheme [9].

4.2. Arbitrary compatibilities

In the preceding subsection we have restricted our-
selves to the case of symmetric compatibility coe$cients
and have shown how, under this circumstance, the
proposed continuous-time relaxation schemes are
closely related to the theory of consistency of Hummel
and Zucker. However, although symmetric compatibili-
ties can easily be derived and asymmetric matrices
can always be made symmetrical (i.e., by considering
R#RT), it would be desirable for a relaxation process
to work also when no restriction on the compatibility
matrix is imposed [9]. This is especially true when
the relaxation algorithm is viewed as a plausible model
of how biological systems perform visual computation
[16].

We now show that the proposed relaxation dynamical
systems still perform useful computations in this case,
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and their connection with the theory of consistency con-
tinues to hold. The main result is the following:

Theorem 4.4. Let p3K
n,m

be a strictly consistent labeling.
Then p is an asymptotically stable equilibrium point for
the continuous-time relaxation labeling schemes dexned in
Eqs. (5) and (6).

Proof. The "rst step in proving the theorem is to rewrite
the models in the following way:

d

dt
p"F(p),

where, for all i"12n and j3",

F
i
(j) (p)"p

i
(j) Aqi (j)!+

k
p
i
(k)q

i
(k)B

for the standard model, and

F
i
(j) (p)"p

i
(j) A

q
i
(j)

+kpi
(k)q

i
(k)

!1B
for the normalized model.

Let DF(p) be the di!erential of F in p. We will show
that if p is strictly consistent all eigenvalues of DF(p) are
real and negative. This means that p is a sink for the
dynamical system and therefore an asymptotically
stable point [15].

We begin by recalling that a strictly consistent labeling
is necessarily non-ambiguous. Denoting by j(i) the
unique label assigned to object b

i
, we have

p
i
(j)"G

0 if jOj(i)

1 if j"j(i)
"djj (i)

where d is the Kronecker delta, i.e., d
xy
"1 if x"y, and

d
xy
"0 otherwise. Furthermore, from Eq. (3), we have

q
i
(j(i))'q

i
(j) for all jOj(i).

We "rst prove the theorem for the standard model.
Deriving F with respect to p

j
(o), we have

LF
i
(j)

Lp
j
(o)

(p)"d
ij
djoAqi (j)!+

k
p
i
(k)q

i
(k)B

#p
i
(j) A

Lq
i
(j)

Lp
j
(o)

!d
ij
q
i
(o)!+

k
p
i
(k)

Lq
i
(k)

Lp
j
(o)B.

(8)

If we arrange the assignment vector in the following
way:

p"(p
1
(j

1
),2, p

1
(j

m
),2, p

n
(j

1
),2, p

n
(j

m
))T

and de"ne the matrices C
ij
"(C

ij
(j, k))j,k as

C
ij
(j, k)"LF

i
(j)/Lp

j
(k), the di!erential takes the form

DF"A
C

11
C

12 2 C
1n

C
21

C
22 2 C

2n
F F } F

C
n1

C
n2 2 C

nn
B.

We can show that, if p is strictly consistent, C
ij
"0 if

iOj. In fact, we have

LF
i
(j)

Lp
j
(o)

(p)"p
i
(j) A

Lq
i
(j)

Lp
j
(o)

!+
k

p
i
(k)

Lq
i
(k)

Lp
j
(o)B

"djj(i) A
Lq

i
(j)

Lp
j
(o)

!

Lq
i
(j(i))

Lp
j
(o) B"0.

In this case the di!erential takes the form

DF"A
C

11
0

}

0 C
nnB.

Analyzing the matrices C
ii

we can see that these too
take a particular form on strictly consistent assignments.
In fact we have

LF
i
(j)

Lp
i
(o)

(p)"djo Aqi (j)!+
k

p
i
(k)q

i
(k)B

#p
i
(j) A

Lq
i
(j)

Lp
i
(o)

!q
i
(o)!+

k
p
i
(k)

Lq
i
(k)

Lp
i
(o)B

"djo(qi
(j)!q

i
(j(i)))

#djj(i) A
Lq

i
(j)

Lp
i
(o)

!q
i
(o)!

Lq
i
(j(i))

Lp
i
(o) B

"djo(qi
(j)!q

i
(j(i)))!djj(i)qi (o).

As we can notice, the non-zero values of C
ii

are on the
main diagonal and on the row C

ii
(j,o) with j"j(i).

Thus, the eigenvalues of C
ii

are the elements on the main
diagonal. These are

q
i
(j)!q

i
(j(i)) for jOj(i),

!q
i
(j(i)) otherwise.

(9)

Since p is strictly consistent, q
i
(j)(q

i
(j(i)) so all the

eigenvalues are real and negative and not lower than
!q

i
(j(i)). This tells us that the assignment is a sink, and

hence an asymptotically stable point for the dynamical
system.

We now prove the theorem for the normalized model.
The fundamental steps to follow are the same as for the
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standard model; we mainly have to derive the new values
for the partial derivatives

LF
i
(j)

Lp
j
(o)

(p)

"

d
ij
djoqi(j)#p

i
(j) (Lq

i
(j)/Lp

j
(o))

+kpi(k)q
i
(k)

!

p
i
(j)q

i
(j) (d

ij
q
i
(o)#+kpi(k) (Lq

i
(k)/Lp

j
(o)))

(+kpi(k)q
i
(k))2

!d
ij
djo

"d
ij
djo

q
i
(j)

q
i
(j(i))

#djj(i)
Lq

i
(j)/Lp

j
(o)

q
i
(j(i))

!d
ij
djj(i)

q
i
(j)q

i
(o)

q
i
(j(i))2

!djj(i)
q
i
(j) (Lq

i
(j(i))/Lp

j
(o))

q
i
(j(i))2

!d
ij
djo

"d
ij
djo

q
i
(j)

q
i
(j(i))

!d
ij
djj(i)

q
i
(o)

q
i
(j(i))

!d
ij
djo .

As the standard model, we have C
ij
"0 for iOj, and the

matrices C
ii

are non-zero only on the main diagonal and
on the row related to the assignment j(i). Once more,
then, the eigenvalues are equal to the elements on the
main diagonal. These are

q
i
(j)!q

i
(j(i))

q
i
(j(i))

for jOj(i),

!1 otherwise.
(10)

Thus the eigenvalues are all real and negative and not
lower than !1, i.e., strictly consistent assignments are
sinks for system (6). h

The previous theorem is the analog to the fundamental
local convergence result of Hummel and Zucker [9, The-
orem 9.1], which is also valid for the classical relaxation
scheme (2) [6, Theorem 6.4]. Note that, unlike Theorem
4.3, no restriction on the structure of the compatibility
matrix is imposed here.

5. Discretizing the models

In order to simulate the behavior of the models on
a digital computer, we need to make them evolve in
discrete rather than continuous time steps. Two well-
known techniques to approximate di!erential equations
are the Euler method and the Runge}Kutta method.
With the Euler method we have

pt`h
i

(j)"pt
i
(j)#hFt

i
(j) (p), (11)

where h is the step size. This equation is advantageous
since it can be computed in a very e$cient way, so it is
the ideal candidate for our simulations. We will prove
that, given a certain integration step h, this model enjoys

all the dynamical properties shown for the continuous
models it approximates.

In order to determine the di!erence in global behavior
between the continuous models and the discrete approxi-
mations, we also use a "ner discretization model: the IV
grade Runge}Kutta method. This has been done on the
assumption that this model would have a global dynamic
behavior very similar to that of the continuous models.
We have chosen the following Runge}Kutta scheme:

pt`h
i

(j)"pt
i
(j)#1

6
k
1
(i, j)#2

6
k
2
(i, j)#2

6
k
3
(i, j)

#1
6

k
4
(i, j),

where the coe$cients k
1
, k

2
, k

3
, k

4
represent

k
1
(i, j)"hF

i
(j) (p),

k
2
(i, j)"hF

i
(j) (p#1

2
k
1
),

k
3
(i, j)"hF

i
(j) (p#1

2
k
2
),

k
4
(i, j)"hF

i
(j) (p#k

3
),

We will prove that the models discretized with Euler's
method are well de"ned, that is, they map points in the
assignment space K

n,m
onto K

n,m
. Euler's scheme applied

to our standard relaxation model (5) gives

pt`h
i

(j)"pt
i
(j)#hpt

i
(j) Aqt

i
(j)!+

k
pt
i
(k)qt

i
(k)B.

We note that when h equals 1 the process is identical to
the one recently proposed by Chen and Luh [17,18].
Their model imposes strict constraints on the compatibil-
ity coe$cients to insure that K

n,m
be invariant with

respect to iterations of the process. However, it can be
proven that, if an appropriate integration step h is
chosen, it is not necessary to impose such constraints.

It is easy to prove that +jpi (j) always equals 1:

+
j

pt`h
i

(j)"1#h A+j pt
i
(j)qt

i
(j)!+

j
pt
i
(j)+

k
pt
i
(k)qt

i
(k)B

"1.

But we have to prove that the iteration of the process
never leads to negative assignments.

Proposition 5.1. Let h)1/q
i
(j; p) for all i, j, p. Denoting

by E the function generated applying Euler's scheme to
model (5), then for all p3K

n,m
, we have E

i
(j) (p)*0.

Proof. We have

pt`h
i

(j)*pt
i
(j)#hp

i
(j) Aqt

i
(j)!+

k
pt
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hB
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i
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i
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i
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1

hB
*pt

i
(j)!hpt

i
(j)

1

h
"0

which proves the proposition. h
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If we use the linear support function (1), the integration
step can be

h)
1

max
ij M+

j
maxk r

ij
(j, k)N

It can readily be seen that this model also corrects
deviation from the assignment space, provided that
pt
i
(j)*0. In fact, given +jpt

i
(j)"1#e we have

+
j

pt`h
i

(j)"+
j

pt
i
(j)#h +

j
pt
i
(j) Aqi (j)!+

k
pt
i
(k)qt

i
(k)B

"(1#e)#h CA1!+
j

pt
i
(j)B+k pt

i
(k)qt

i
(k)D

"1#e!eh +
k

pt
i
(k)qt

i
(k).

As far as the normalized model is concerned, Euler's
scheme yields

pt`h
i

(j)"(1!h)pt
i
(j)#h

pt
i
(j)qt

i
(j)

+kpt
i
(k)qt

i
(k)

.

As can easily be seen, with h"1, this is the same equa-
tion that de"nes the classical model. Thus for h"1 the
model is well de"ned.

With an h lower than 1 the resulting assignment is
a convex linear combination of p and the assignment
resulting from applying one iteration of the classical
method to p. Since the assignment space K

n,m
is convex,

the resulting assignment will also be in K
n,m

.
We can see that this model is also numerically stable.

In fact, with h"1, if we have p
i
(j)*0, the model cor-

rects any deviation from K
n,m

in one step. On the other
hand, with h(1, if +jpt

i
(j)"1#e, we have

+
j

pt`h
i

(j)"+
j

(1!h)pt
i
(j)#+

j
h

pt
i
(j)qt

i
(j)

+kpt
i
(k)qt

i
(k)

"(1!h)(1#e)#h

"1#e!he.

That is, the iteration of the model reduces the deviation
from K

n,m
at every step.

It is easy to prove that strictly consistent assignments
are local attractors for these discrete models. In order to
do this we must note that the di!erential of E is I#hDF;
so, given an eigenvalue a of DF, there is an eigenvalue of
DE equal to 1#ha. Furthermore, this property de"nes
all eigenvalues of DE. As we have seen in Eq. (9), the
eigenvalues of DF calculated for the standard model are
all not lower than max

i
M!q

i
(j(i))N and all strictly lower

than 0; so, for any integration step lower than 1/q
i
(j)

for all i and all j, we have, for any eigenvalue b
of DE, b"1#ha*1!h(1/h)"0 and b"1#ha(1.
Thus, strictly consistent assignments are hyperbolic at-
tractors for the system [19]. The eigenvalues of DF

calculated for the normalized model are all not lower
than !1 and all strictly lower than 0 (10); so, for h)1
the eigenvalues of DE are all not lower than 0 and all
strictly lower than 1. Thus, in this case as well, strictly
consistent assignments are hyperbolic attractors for the
system.

6. Experimental results

In order to evaluate the practical behavior of the
proposed models we conducted three series of experi-
ments. Our goal was to verify that the models exhibit the
same dynamical behavior as the classical relaxation
scheme (2). The experiments were conducted using both
the Euler and the Runge}Kutta discretizations described
in the previous section. We did not considered the Euler
discretization of the normalized model because, as seen
before, it corresponds to the classical scheme, with a step
size h"1.

6.1. Labeling a triangle

The "rst set of simulations were conducted over the
classical `trianglea problem introduced as a toy example
in the seminal paper by Rosenfeld et al. [11]. The prob-
lem is to label the edges of a triangle as convex, concave,
right- or left-occluding. Here, only eight possible label-
ings are possible (see Fig. 3 and Ref. [11] for details). The
compatibility coe$cients used were the same as those
given in Ref. [11]. As a "rst test we veri"ed whether the
models' behaviors di!er, starting from the eight initial
assignments given Ref. [11]. From these starting points
all the models gave the same sets of classi"cations. After
this preliminary test, we generated 100 random assign-
ments and used them as starting points for each model.
The iterations were stopped when the sum of Kullback's
I-directed divergence [20] between two successive assign-
ments was lower than 10~7. The average number of
iterations that the models needed to reach the stopping
criterion is shown in Table 1. All the models converged
to a non-ambiguous assignment. Moreover, the Euler
discretizations of our dynamics gave the same results as
the classical model for all initial assignments, while the
Runge}Kutta discretizations gave a di!erent result only
for one initial assignment. This single assignment was
reached with the highest number of iterations of all the
assignments generated. This is probably due to the sym-
metry of the problem: a similar problem can be seen with
a uniform probability distribution among assignments.
The iteration of each model should converge to the
a priori probability of each classi"cation, that is 3

8
for

each occluding edge and 1
8

for convex or concave edges.
What really happens is that the assignments start by
heading towards the a priori distribution, but, after a
few iterations, they head towards a non-ambiguous
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Fig. 3. A triangle and its possible interpretations.

Table 1
Average number of iterations for the triangle labeling problem

Model Iterations

Classical (Eq. (2)) 79.1
Standard, discretized with Euler's scheme 118.8
Normalized discretized with Runge}Kutta scheme 81.4
Standard, discretized with Runge}Kutta scheme 87.2

assignment. This happens because the a priori probabil-
ity is not a hyperbolic attractor for the system. It is
possible that a similar problem a!ected the only initial
assignment that gave di!erent results: the models headed
toward di!erent non-ambiguous solutions from a unique
non-hyperbolic equilibrium that separates the orbits.

6.2. Finding maximal cliques in undirected graphs

Let G"(<, E) be an undirected graph, where < is the
set of vertices and E-<]< is the set of edges. Vertices
i and j are called adjacent if they are connected by an
edge. A clique of G is a subset of < such that every pair of
vertices is adjacent. A clique C is called maximal if no
strict superset of C is a clique, and the highest cardinality
maximal clique is called a maximum clique. The cardinal-

ity of a set C will be denoted by DCD. The maximum clique
problem (MCP) is to "nd a maximum clique in G, and it
is known to be NP-hard even to approximate well (see
Ref. [21] for a recent review).

The Motzkin}Straus theorem [22] allows us to formu-
late the MCP in terms of the following continuous quad-
ratic optimization problem:

maximize f (x)"xT A
G

x

subject to x3K
1,n

-Rn, (12)

where n is the number of vertices in G, and A
G
"(a

ij
) is

its adjacency matrix, i.e., the n]n matrix de"ned as
a
ij
"1 if (i, j)3E, and a

ij
"0 if (i, j) N E. Speci"cally, it

can be proven that a subset C of vertices in G is a max-
imum clique if and only if its characteristic vector
x#3K

1,n
, de"ned as x#

i
"1/DCD if i3C and x#

i
"0 other-

wise, is a global solution of program (12). In this case, the
size of the maximum clique C is related to the global
maximum as follows: f (x#)"1!1/DCD. It can also be
seen that local solutions to Eq. (12) are in correspondence
with maximal cliques of G [23].

Note that the function f of program (12) is exactly the
average local consistency de"ned in Eq. (4) for a 1-object,
n-label labeling problem, with the (symmetric) adjacency
matrix A

G
playing the role of the compatibility matrix R.

In Ref. [24], this observation has motivated the use of
the classical (discrete-time) Rosenfeld}Hummel}Zucker
relaxation labeling algorithm (2) as an e$cient heuristic
to approximately solve the MCP. The algorithm, starting
from any point in K

1,n
, iteratively maximizes the function

f and eventually approaches a "xed point which corres-
ponds to a local maximizer of f of K

1,n
. This solution is

therefore employed to get an estimate of the size of the
maximum clique in G.

As the second series of experiments for the work pre-
sented here, we tested our continuous-time dynamics on
the MCP, following the approach just described. The
models were applied on 10 randomly generated 100-
vertex graphs with 90% connectivity. The algorithms
were started from the barycenter of K

1,n
as in Ref. [24],

i.e. from the vector (1/n,2, 1/n)T, and they were allowed
to iterate until the Kullback's divergence between two
successive vectors was lower than 10~20. Table 2 shows
the average number of iterations needed by the models to
converge. As far as the long-term behavior of the models
is concerned, a picture similar to the triangle experiments
emerged. The Euler discretization of the standard model
returned the same solutions as the classical scheme (2) in
all the cases. The Runge}Kutta discretizations, instead,
di!ered from the classical scheme in one case only, where
they found a clique size greater than that found by the
classical scheme (i.e, 28 instead of 27 for both the stan-
dard and the normalized models). These results are in
accordance with the recent empirical "ndings of Bomze
and Rendl [25].
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Table 2
Average number of iterations for the maximal clique experi-
ments

Model Iterations

Classical (Eq. (2)) 1688.9
Standard, discretized with Euler's scheme 1717.6
Normalized discretized with Runge}Kutta scheme 1747.8
Standard, discretized with Runge}Kutta scheme 1780.0

Table 3
Average number of iterations for the random compatibility
experiments

Model Iterations

Classical (Eq. (2)) 294.0
Standard, discretized with Euler's scheme 643.1
Normalized discretized with Runge}Kutta scheme 260.1
Standard, discretized with Runge-Kutta scheme 324.5

6.3. Random asymmetric compatibility matrices

The third set of simulations was carried out by
generating random (asymmetric) compatibility matrices.
Since in this case there is no Liapunov function which
rules the dynamics of the models, this is the set of tests
which most e!ectively points out di!erences in the pro-
cess' behavior. Ten random compatibility matrices were
generated for this experiment and for each matrix the
various models were started from 10 random assign-
ments. Hence we made a hundred tests for each model.
The assignment space dimension was "ve objects (n"5)
and three labels (m"3). The stopping criterion was the
same as the triangle experiments. Table 3 reports the
average number of iterations needed to reach the stop-
ping criterion.

Since there is no underlying scheme on the pattern of
compatibility coe$cients, we do not expect the models to
always converge to a non-ambiguous assignment. The
aim of this set of tests was to verify whether, when the
classical model converges to a non-ambiguous assign-
ment, the other models converge to the same assignment
too. In our experiments the classical model (2) converged
to a non-ambiguous assignment 22 times out of 100
trials. The Runge}Kutta discretization of both models
converged to the same assignments 20 times, while the
Euler discretization of the standard model returned the
same assignments 17 times. These di!erences are not
surprising since Theorem 4.4 guarantees us that the mod-
els exhibit the same dynamical behavior only in the
vicinity of consistent labelings, and in the asymmetric
case no Liapunov function has been found.

7. Conclusions

In this paper we have presented and analyzed two
relaxation labeling processes. In contrast with the stan-
dard approach, these models evolve through continu-
ous-time rather than discrete-time dynamics. This fact
makes the study of their properties simpler and more
elegant, permits the design of analog hardware imple-
mentations, and makes them more plausible biologically.
We have studied the properties of the models and have
shown that they are intimately related to Hummel and
Zucker's classical theory of consistency. More precisely,
we have proven that when the compatibility matrix is
symmetric the models possess a quadratic Liapunov
function, and (strictly) consistent labelings are asymp-
totically stable stationary points for them. In the more
general case of asymmetric compatibilities, we have
shown that strictly consistent labelings still are asymp-
totically stable for the proposed dynamical systems, al-
though no Liapunov function has been found. These are
exactly the same properties enjoyed by classical relax-
ation labeling schemes. The dynamics of the models
discretized through Euler's scheme has also been studied.
Experimental results on various test problems using the
Euler as well as the Runge}Kutta discretizations have
been presented which show the practical behavior of the
proposed algorithms. It turned out that the models ex-
hibit essentially the same global dynamics as the classical
Rosenfeld}Hummel}Zucker scheme when symmetric
compatibility matrices are used. In the case of asymmet-
ric matrices, however, some di!erences emerge, which
can be explained by the lack of a Liapunov function
driving the model's behavior.
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